$\star t \star t \star t \star * * * * * * * * *$

 А इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.
"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"
"पुराने को छोड नये के तरफ" Jawaharlal Nehru
"Step Out From the Old to the New"

IS 7600 (1975): Analysis of variance [MSD 3: Statistical
Methods for Quality and Reliability]

"Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

Indian Standard (Reaffirmed 2001) ANALYSIS OF VARIANCE

(Third Reprint MAY 1996)

UDC 519.241.6
© Copyright 1975
BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

Indian Standard

ANALYSIS OF VARIANCE

Quality Control and Industrial Statistics Sectional Committee, EC 3

Chairman

Dr P. K. Bose

Members
Shri M. G. Bhade
Col H. S. Сhbachhi
Shri S. P. Suri (Alternate)
Director
Shri S. S. Pillai (Alternate)
Shri D. Dutta
Shri R. S. Gupta
Shri M. V. V. Raman (Alternate)
Shri S. K. Gupta
Shri A. Lahtri
Shri U. Dutia (Alternate)
Shri S. Mondal
Shri S. K. Banerjee (Altemate)
Dr S. P. Mukherjee
Shri B. Himatsingeka (Alternate)
Shri R. G. Narasimhan
Shri T. V. Ratnam
$\mathrm{D}_{\mathrm{R}} \mathrm{D} . \operatorname{Ray}$
Shri S. Ranganathan (Alternate)
Shri P. R. Sengupta
Shri N. Ramadurai (Alternate)
Shri B. Sitaraman
Shri P. N. Kapoor (Alternate)
Shri S. Subramu

Representing
University of Calcutta, Calcutta

Tata Iron and Steel Co Ltd, Jamshedpur
Directorate General of Inspection, Ministry of Defence, New Delhi

Institute of Agricultural Research Statistics (ICAR), New Delhi

The Indian Tube Co Ltd, Jamshedpur
National Productivity Council, New Delhi
Central Statistical Organization, New Delhi
Indian Jute Industries' Research Association, Calcutta

National Test House, Calcutta
Indian Association for Productivity, Quality and Reliability, Calcutta

Indian Statistical Institute, Calcutta
The South India Textile Research Association, Coimbatore
Defence Research and Development Organization, Ministry of Defence, New Delhi

Tea Board, Calcutta
Army Statistical Organization (Ministry of Defence), New Delhi

Steel Authority of India Ltd, New Delhi

Copyright 1975

BUREAU OF INDIAN STANDARDS
This publication is protected under the Indian Copyright Act (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.
(Continued from page 1)
Members Representing

Shri S. N. Vohra
Shri Y. K. Bhat, Dcputy Director (Stat) (Secretary)

Directorate General of Supplies and Disposals, New Delhi
Director General, ISI (Ex-officio Member)

Industrial Statistics Subcommittee, EC $3: 7$

Convener

Dr P. K. Bose
University of Calcutta, Calcutta; and Indian Institute of Social Welfare and Business Management, Calcutta

Members

Director
Dr M. Holla (Alternate)
Dr A. K. Gayen
Shri S. K. Gupta
Shri S. B. Pandey
Shri B. K. Sarkar
Shri D. R. Sen
Dr (Kumari) N. S. Shakuntala
Shri B. Sitaraman
Shri P. N. Kapoor (Alternate)

Institute of Agricultural Research Statistics (ICAR), New Delhi

Indian Institute of Technology, Kharagpur
Central Statistical Organization, New Delhi
Imperial Chemical Industries (India) Private Ltd, Calcutta
Indian Statistical Institute, Calcutta
Delhi Cloth \& General Mills Co Ltd, Delhi
Defence Research and Development Organization (Ministry of Defence), New Delhi
Army Statistical Organization (Ministry of Defence), New Delhi

Indian Standard ANALYSIS OF VARIANCE

0. FOREWORD

0.1 This Indian Standard was adopted by the Indian Standards Institution on 10 February 1975, after the draft finalized by the Quality Control and Industrial Statistics Sectional Committee had been approved by the Executive Committee.
0.2 The technique of analysis of variance is an indispensable tool in the scientific and industrial research for the analysis of experimental data involving quantitative measurements and is particularly helpful when several independent sources of variation are present in the data such as the results obtained at different temperatures, duplicate determinations of the same material made by several analysts, measurements classified according to several sources of supply of raw material obtained from different vendors, etc.
0.3 It is well-known that the observations obtained by repetitive experiments vary among themselves. The source of variation in the data may be due to various causes, assignable or chance. Using the analysis of variance techniques it is possible to estimate how much of the total variation in a set of data can be attributed to one or more assignable causes of variation, the remainder which is not attributable to any assignable causes of variation being classed as due to chance causes which produces the residual or error variation.
0.4 This standard is a sequel to the 'Indian Standard on Statistical Tests of Significance' (IS : 6200-1971). To compare the means of two groups of observations and to assess whether the difference between them can be reasonably ascribed to chance, the t-test is used. When the comparison is to be made among the means of more than two groups of observations, resort to the analysis of variance technique is made. In fact, t-test is a particular case of analysis of variance.
0.5 In reporting the result of a test or analysis, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS : 2-1960*.

1. SCOPE

1.1 This standard intends to give a brief outline of the general treatment of the analysis of variance technique with respect to some of the designs

[^0]which are more frequently used in industrial experimentation. The techniques have been illustrated with examples wherein the necessary computational details have also been given.

2. TERMINOLOGY

2.0 For the purpose of this standard, the following definitions shall apply.
2.1 Standard Deviation - The square root of the quotient obtained by dividing the sum of squares of deviations of the observations from their mean by one less than the number of observations in the sample.

2.2 Variance - Square of standard deviation.

2.3 Degrees of Freedom (D. F.) - The number of independent component values which are necessary to determine a statistic.
2.4 Null Hypothesis - The hypothesis (or assumption) of the equivalence (or no difference) among the effects of methods so that the samples emanate from the same lot.
2.5 Level of Significance - The probability (or risk) of rejecting the null hypothesis when it is true. Conventionally, it is taken to be 5 percent or 1 percent.
2.6 Corrected Sum of Squares - The total of the squares of the deviations of the observations from their mean.

3. SOME BASIC CONCEPTS

3.1 Mathematical Model

3.1.1 Before the application of the analysis of variance techniques to any experimental data, it is fundamental to have some knowledge of the mathematical model holding good for the particular investigation under consideration. Basically there are three models, namely, fixed effects model, random effects model and mixed effects model (see also Appendix A).
3.1.2 In the fixed effects model, some of the assignable causes of variation in the experiment are deliberately chosen so that the results of the analysis are not amenable for generalization in that direction. In other words, when the effects are unknown constants (parameter) the model is called fixed effects model or model I. For example, in an inter-laboratory investigation on the checking of the precision of tensile testing machine, four laboratories possessing a particular brand of the machine may be intentionally chosen so that the results of the analysis will apply only to these four laboratories and any conclusion derived will not be applicable to all the laboratories in general. On the other hand, if the tensile testing machines of a large number of laboratories are to be investigated and due to limitations of facilities, the four laboratories chosen are a random sample of all the laboratories, then
the mathematical model chosen is that of a random effects model or model II. The mixed effects model, as the name itself indicates, is the combination of the earlier two models where some of the effects are of the fixed nature, the remaining being of random nature. The random effects model has extensive applications in most of the industrial experimentation.

3.2 Additive Nature of Sum of Squares

3.2.1 As the name implies the technique of analysis of variance consists in separating the total variance into parts, each part measuring the variability attributable to some specific source. For example in an inter-laboratory testing there may be variability among laboratories and variability within the laboratory. The latter, in turn, may be composed of a number of components of differing magnitude and importance like the variability among different analysts, among days, or among determinations made on the same day. Using the additive property of the variance the total variation between members of a set of observations, classified according to one or more criteria, can be broken up into components, attributable to different criteria of classification which are of experimental interest or importance. By testing the significance of these components it is possible to determine which of the criteria are associated with a significant proportion of the overall variability in the averages.
3.2.2 Planned experiments have proved to be very powerful and economical in investigating the influence of various factors contributing to the total variance in the measurable characteristics of the product. In these, measurements are taken on a sample of units, which is so constituted as to ensure the simultaneous randomization in experimental error and variation due to changes in treatments. As long as they are clearly defined and reproducible these treatments may represent different materials or temperatures or processes or any variation in operating conditions.

3.3 Orthogonality of Designs

3.3.1 For the easy statistical analysis of the data resulting from any investigation, a desirable feature of the design adopted is its orthogonality. Orthogonality ensures that the different classes of effects shall be capable of direct and separate estimation without any entanglement.
3.3.2 For example, in an experiment to observe the effect of varying two factors, say temperature and pressure, wherein the temperature is measured at four levels and pressure at three levels, there will be 12 experimental conditions generated by taking each level of temperature with each level of pressure. The comparison between the average of three results at any two temperatures will then be purely a measure of the effect of temperature (and vice versa) since the averages will have been taken over the same set of pressures. The two factors are said to be mutually orthogonal.

Now by accident or design suppose that the combination corresponding to the highest temperature and pressure is missing from the experiment,
then the difference between the averages of the observations at the lowest and the highest temperatures could not be purely a measure of the effect of temperature because the first average is based on observations at three levels of pressure whereas the second observation is based on the average at only two levels of pressure and hence the difference between the two averages will be, to an unknown extent, influenced by the effect of pressure. The experiment in this case is non-orthogonal.
3.4 The details of the application of the technique of analysis of variance will vary with the number of independent causes of variation. It is possible to classify the data with respect to each independent source of variation and the complete classification is a necessary first step to the application of analysis of variance. The following sections describe the procedure for analysis of variance under different categories which are commonly met in practice.

4. ANALYSIS OF VARIANCE-SINGLE FAGTOR OR ONE-WAY CLASSIFICATION OF DATA

4.1 Replicate Determinations

4.1.1 Data will frequently be encountered where classification is based on one factor only, for example analysts or temperatures or batches of material. The data may consist of (a) replicate determinations of the same material made by several analysts in the same laboratory or (b) measurements obtained at different temperatures or (c) measurable characteristics of some material obtained in different lots or shipment from the same supplier, etc.
4.1.2 In all these, there will be variation within replicates (unassignable variation in the system) which is a measure of the precision. There will also be a variation in means of results obtained under different conditions. It is due to the differences among analysts or differences in temperatures or lot-to-lot variation of the shipment. Analysis of variance helps to separate these effects and to determine whether there is any significant difference between operators or temperatures or shipments, as the case may be.
4.1.3 Usually, in the interest of experimental efficiency and simplicity of analysis, it is desirable to have the same number of replicate determinations for each class. But owing to a lack of design or to the loss of part of data or natural grouping of experimental material or perhaps due to deliberate placing of emphasis on certain effects, the number of observations in various classes may be unequal. The following two examples illustrate the method of analysis when there are (a) unequal number of observations in each class, and (b) equal number of observations in each class.
4.1.4 Example 1 - The following data represent the warpway breaking strength of Type II Indian hessian [see IS : 2818 (Part II)-1971*] measured

[^1]in units of kg. Products of three different mills A, B and C were tested and the test results are reproduced below :

Mill	WarpwayBreaking Strength (kg)	No. of Observations	Total	Mean
A	$87,96,99,94,91$	5	467	93.4
B	$93,103,90,93,99,88,100,91$	8	757	94.6
C	$98,88,84$	Total	3	270

The various calculations needed for forming the required analysis of variance are as follows:
a) Uncorrected total sum of squares: $(87)^{2}+(96)^{2}+\ldots(84)^{2}=139940$
b) Uncorrected sum of squares between mills : $\frac{(467)^{2}}{5}+\frac{(757)^{2}}{8}+\frac{(270)^{2}}{3}$

$$
=139548.93
$$

c) Correction factor
$\frac{(1494)^{2}}{16}=139502.25$
d) Total sum of squares
(a) $-(c)=437.75$
e) Sum of squares between mills
(b) $-(\mathrm{c})=46.68$
f) Sum of squares within mills
(d) $-(\mathrm{e})=391.07$

The degrees of freedom corresponding to the various entries of the analysis of variance table are obtained as follows:

Degrees of freedom for total sum of squares $=$ Total number of observations $-1=16-1$ $=15$
Degrees of freedom for between mills $=$ Total number of mills -1

$$
=3-1=2
$$

Degrees of freedom for within mills $=$ Total degrees of freedom degrees of freedom for between mills $=15-2=13$

Analysis of Variance Table

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F Ratio
Between mills	2	46.68	23.34	$\frac{23.34}{30.08}=0.78$
Within mills	13	391.07	30.08	
Total	15	437.75		

To test the hypothesis that there is no appreciable variation between the average breaking strength of the products of the different mills the variance ratio is formed as $F=\frac{23.34}{30.08}=0.78$. Since this is less than 3.81 which is the tabulated value of F for 2 and 13 degrees of freedom at 5 percent level,
there is insufficient evidence to reject the hypothesis. Therefore, it may be concluded that there is no appreciable variation in the breaking strength of the products of the three mills.
4.1.5 Example 2 - The following data are from 5 replicate runs on the time of passage of aluminium powder through 6 different test units. It is endeavoured to test whether there is any significant difference between the 6 test units when compared with the variation within units :

Run	Unit \rightarrow	1	2	3	4	5	6
1		52.9	$54 \cdot 0$	$52 \cdot 6$	50.5	54.6	54.0
2		52.3	53.8	53.2	50.8	54.6	53.3
3		52.2	53.8	53.4	50.7	54.4	53.7
4		52.5	53.6	53.4	50.8	54.4	53.5
5		52.7	53.6	53.0	50.5	54.4	53.7

The data can be coded by subtracting 50 from each value and multiplying the remainder by 10 to remove the decimal. Coding by adding or subtracting a constant has no effect on the calculation of the corrected sum of squares or the variance. Coding by multiplying by a constant will change the resulting variance by the square of this constant. However, since the mean squares are tested by a ratio of two calculations, the coding factor will cancel. If ultimately it is intended to use the calculated variances, they will have to be decoded by dividing by 100 .

The coded data and the analysis of variance are as follows:

Run	Unit \rightarrow	1	2	3	4	5	6
1		29	40	26	5	46	40
2		23	38	32	8	46	33
3		22	38	34	7	44	37
4		25	36	34	8	44	
5		27	36	30	5	44	37
	Total	126	188	156	33	224	182
	Mean	$25 \cdot 2$	$37 \cdot 6$	$31 \cdot 2$	$6 \cdot 6$	$44 \cdot 8$	$36 \cdot 4$

The various calculations are obtained as below :
a) Uncorrected total sum of squares: $(29)^{2}+(23)^{2}+\ldots+(35)^{2}+(37)^{2}$ $=32119$
b) Uncorrected sum of squares between units : $\frac{1}{5}\left[(126)^{2}+(188)^{2}+\ldots\right.$ $\left.(182)^{2}\right]=31989$
c) Correction factor: $\frac{(909)^{2}}{30}=27542 \cdot 7$

Hence the corrected sum of squares are obtained as :
d) Total sum of squares: (a) - (c) $=32119-27542 \cdot 7=4576 \cdot 3$
e) Sum of squares between units : (b) - (c) $=31989-27542 \cdot 7=4446 \cdot 3$
f) Sum of squares within units: (d)-(e) $=4576 \cdot 3-4446 \cdot 3=130 \cdot 0$

The degrees of freedom for the various entries of the analysis of variance table are obtaincd as follows:

Total sum of squares : $\quad 30-1=29$
Between units : $6-1=5$
Within units: $29-5=24$
Analysis of Variance Table

Source of Variation	D.F.	Sum of Squares	Mean Square	F Ratio
Between units	5	4446.3	$889 \cdot 26$	$\frac{889 \cdot 26}{5 \cdot 42}=164 \cdot 1 * *$
Within units	24	130.0	5.42	
Total	29	4576.3		

**Highly significant.
Tabulated F value for 5 and 24 degrees of freedom at 0.01 level is only 3.90 . The F value as obtained from the data is highly significant. Hence there is a strong evidence of a factor between units which causes a variation in the results greater than that which can be accounted for by variation within units.

It may now be desirable to compare all possible pairs of means to find out which of the means or how many of them differ significantly from the others to cause the overall variation among means to be significant. For this purpose use is made of t-test for difference between means, taken two at a time. With n means, there are $\frac{n(n-1)}{2}$ comparisons (number of combinations of n things taken two at a time). In the present example there will be $\frac{6 \times 5}{2}=15$ comparisons.

The residual variance gives a measure of the precision of a single measurement. This measure is identical with the pooled estimate of the standard deviation. In the present example it is obtained as $\sqrt{5 \cdot 42}=2 \cdot 327$. Standard deviation of the mean of five measurements is $\frac{1}{\sqrt{5}}$ times the standard deviation of single measurement and is equal to $\frac{2.327}{\sqrt{5}}=1.0406$.

The critical difference, useful for finding out whether any two means are significantly different or not, is obtained as $t_{24} \times \sqrt{2} \times 1.0406$ where t_{24} is the tabulated value of the t distribution for 24 degree of freedom at the 5 percent level, which is obtained as $2 \cdot 064$. The critical difference is thus obtained
as 3.04 . It may, however, be noted that the use of critical difference is valid only when the F ratio in the analysis of variance table is found to be significant. After obtaining the critical difference the various means are arranged either in the ascending or the descending order of magnitude as follows:

Unit No.	4	1	3	6	2	5
Means	$6 \cdot 6$	$25 \cdot 2$	$31 \cdot 2$	$36 \cdot 4$	$37 \cdot 6$	$44 \cdot 8$

Any two means not under scored by the same line are significantly different. Thus in the present example only the means between unit 6 and unit 2 are not different. Hence it may be concluded that all other units give results which are significantly different from one another.

4.2 Single Classification with Subgrouping (Nesting)

4.2.1 Often the principal classification in the data can be divided into sub-classifications which do not cut across the main classes. Each sample may be composed of sub-samples and these, in turn, may consist of sub-subsamples. The repeated sampling and sub-sampling give rise to nested sampling or hierarchical classification. For example if we draw 10 bales of wool at random from a shipment and take three cores of wool from each bale, the cores are said to be nested within bales. Again several analysts might draw two, three or four specimens (not necessarily the same number for each analyst) from a batch of material and run several replicate analyses on each specimen. The replicate analyses give an estimate of the error variance. The specimens run by the same analyst give a measure of variation within the batch plus the error. The differences between the results of the several analysts include not only the variation between analysts but also the variation between specimens and the error variation. Same situation holds good if several test pieces are cut from each of several rolls of fabric made wholly from several different machines from each of several plants. As long as there is no relation between the corresponding members of the different groupings, the analysis of variance by subgroups (or nesting, as it is sometimes called), applies. Where there is relationship between the members of the subgroups, so that the corresponding division of each subgroup can be considered as a separate class, we have an analysis of variance for more than one main classification. The general arrangement of data for single classification with several hierarchies of subgrouping is illustrated by the following example.
4.2.2 Example 3 - A series of trials is made by three operators to locate a source of variation in a chemical analysis. The procedure consists in taking a specimen, treating it in a combustion-tube furnace and performing the chemical analysis. In the test, three óperators each took two specimens and made three combustion trials on each specimen and titrated each trial in duplicate. The single letter A represents the operator factor, the double

letter $B(A)$ indicates the first or second specimen taken by the operator, and the triple letter $C(A B)$ indicates the combustion trial on each specimen by each operator. The results are shown in duplicate.

Uncorrected sums of squares are obtained as follows:
a) Total sum of squares: $(156)^{2}+(151)^{2}+\ldots+(184)^{2}+(177)^{2}$

$$
=817085
$$

b) Combustion within operators and specimens $C(A B)$:

$$
\frac{(310)^{2}+(305)^{2}+\ldots .+(365)^{2}+(352)^{2}}{2}=816778
$$

c) Specimen within operator $B(A)$:

$$
\frac{(929)^{2}+(905)^{2}+\ldots+(1098)^{2}+(1065)^{2}}{6}=815209
$$

d) Between operator:

$$
\frac{(1834)^{2}+(1318)^{2}+(2163)^{2}}{12}=814937
$$

Correction factor: $\frac{(5315)^{2}}{36}=784700$
Analysis of Variance Table

Source of Variation	D.F.	Sum of Squares	Mean Square	$\underset{\text { Ratio }}{F}$
Operators A	2	814 937-784 700-30 237	15168	$\frac{15168}{131}=116^{* *}$
Specimen within operators $B(A)$	3	815-209-814937=272	91	
Combustion within operators \& specimens $C(A B)$	12	$816778-815209=1569$	131	$\frac{131}{17}=7.7 * *$
Replicates, error	18	(By subtraction) 307	17	

Total
$35817085-784700=32385$
**Highly significant.
From the analysis of variance table it may be concluded that the largest source of variation in results is between operators. There is no evidence of variation between specimens. There is a definite source of variation in combustion step in analysis.

5. ANALYSIS OF VARIANCE - TWO-WAY GLASSIFICATION OF DATA

5.1 If a series of experiments is run at different temperatures and different pressures or if material from several sources of supply is tested under a variety of conditions or if a group of operators makes a series of runs on a
number of pilot plants, two-way classification of data is obtained. In such a case, one of the characteristics can be represented along the rows and the other along the columns. Further, each of the cells formed by the two-way classification can have either one or more than one observation.

5.2 Two-Way Classification with One Observation in Each Cell

5.2.1 The analysis of variance for this arrangement of data is similar to that for the single factor arrangement. The column-factor effect is calculated from the squares of column totals and the row factor effect, from the squares of row-totals. The following example illustrates the method of analysis.
5.2.2 Example 4 - Six samples of dextrose monohydrate were analysed in each of the seven laboratories for copper content (measured as ppm). The data obtained by the investigation is given below:

Sample	1	2	3	4	5	6	Total
Lab							
1	0.3	0.2	0.1	0.7	0.5	0.4	2.2
2	0.9	0.9	0.3	0.3	0.3	0.8	3.5
3	0.8	1.9	0.6	0.4	0.4	1.1	5.2
4	0.6	0.6	0.2	0.3	0.3	0.3	2.3
5	0.5	0.2	0.2	0.2	0.5	0.5	2.1
6	0.4	0.4	0.5	0.4	0.6	0.6	2.9
7	0.5	0.6	0.1	1.0	1.2	1.2	4.6
Total	4.0	4.8	2.0	3.3	3.8	4.9	22.8

The uncorrected sum of squares are calculated as follows:
a) Total sum of squares : $(0 \cdot 3)^{2}+(0 \cdot 2)^{2}+\ldots+(1 \cdot 2)^{2}=17 \cdot 56$
b) $\begin{aligned} & \text { Between laboratories : } \frac{(2 \cdot 2)^{2}}{6}+\frac{(3 \cdot 5)^{2}}{6}+\ldots+\frac{(4 \cdot 6)^{2}}{6}=13.90\end{aligned}$
c) $\begin{aligned} & \text { Between samples } \\ & \text { sum of squares }\end{aligned} \quad: \frac{(4 \cdot 0)^{2}}{7}+\frac{(4 \cdot 8)^{2}}{7}+\ldots+\frac{(4 \cdot 9)^{2}}{7}=13 \cdot 20$

Correction factor $\quad: \frac{(22 \cdot 8)^{2}}{42}=12 \cdot 38$
Analysis of variance table is formed as follows :
Analysis of Variange Table

| Source of Variation | D.F. | Sum of Squares | Mean
 Square | F Ratio |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Between rows (laboratories) | 6 | $13.90-12.38=1.52$ | 0.25 | 0.25 |
| Between columns (samples) | 5 | $13.20-12.38=0.82$ | 0.16 | $\frac{0.09}{0.16}=1.78$ |
| Error | 30 | (by subtraction) 2.84 | 0.09 | |
| Total | 41 | $17.56-12.38=5.18$ | | |

From the analysis of variance table, it can be concluded that there is no significant difference between either the laboratories means or the sample means.

5.3 Two-Way Classification with Multiple Observations in Each

 Cell - In this type of classification more than one observation is obtained in each cell formed by the rows in the columns, that is, repeated measurements are made on different randomly selected individuals.5.3.1 Replication facilitates fuller analysis of the data and the precision of the experiment increases with replication.
5.3.2 In the two-way classification with more than one observation per cell, besides the variation due to row and column effects there would also be an interaction effect which is the result of different row column combinations. As all the different combinations from the groups of the two factors of classification play their part in the experiment, they also contribute to the total variability. This interaction becomes one of the sources of variability which must be taken into account in the analysis of variance. Supposing the criteria of classification are different varieties of material subjected to different treatments. In such a situation the same variety can be differently affected by different treatments and the same treatment can show different cffects with different varieties. This combination effect is the interaction. The following example illustrates the method of analysis.
5.3.3 Example 5-For studying the accuracy of water meters for continuous rate of flow, 5 water meters were tested by each of the two operators A and B. Each operator made five repeat observations on each meter. The observations in terms of the percentage accuracy of the meters are given below :

Operator		Water Meter Number					Total
		1	2	3	4	5	
A		$+0.5$	- 3	-2.5	2	-3	
		-1	-2.5	-3.5	2	-3.5	
		-1	- 3	-1.5	2	-3	
		- 1	- 2	-2	2	-3	
		- 1	- 3	-2.5	2	- 3	
	Cell total	-3.5	-13.5	$-12 \cdot 0$	$10 \cdot 0$	$-15 \cdot 5$	-34.5
B		$+0.5$	-3	- 3	0	-3	
		-3	- 2	- 2	0	-3	
		- 2	-2.5	- 2	0	- 4	
		-1	-3.0	-2	0	-3.5	
		-1.5	- 2	-1	2	-3	
	Cell total	-7.0	-12.5	-10.0	$2 \cdot 0$	-16.5	$-44 \cdot 0$
	Total	-10.5	-26.0	-22.0	12.0	-32.0	-78.5

From the above table the various sums of squares are obtained as follows :
a) Uncorrected total sum of squares $=(0 \cdot 5)^{2}+(-1)^{2}+\ldots \cdot(-3)^{2}$ $=270.75$
Correction factor (CF) $=\frac{(-78 \cdot 5)^{2}}{50}=123 \cdot 24$
Hence the corrected total sum of squares $=270 \cdot 75-123 \cdot 24=147 \cdot 51$
b) Between meters sum of squares $=\frac{(-10 \cdot 5)^{2}}{10}+\ldots \cdot \frac{(-32 \cdot 0)^{2}}{10}-\mathrm{CF}$

$$
=243 \cdot 82-123 \cdot 24
$$

$=120 \cdot 58$
c) Between operators sum squares $=\frac{(-34 \cdot 5)^{2}}{25}+\frac{(-44 \cdot 0)^{2}}{25}-\mathrm{CF}$
$=125 \cdot 05-123 \cdot 24=1.81$
d) Interaction sum of squares
$=\frac{(-3 \cdot 5)^{2}}{5}+\ldots \frac{(16 \cdot 5)^{2}}{5}-C F-$ between meters sum of
squares-between operators sum of squares
$=252 \cdot 05-123 \cdot 24-120 \cdot 58-1.81$
$=6.42$
The analysis of variance table is then formed as follows :

Source of Variation	Degree of Freedom	Sum of Squares	Mean Square	F Ratio
Between meters (M)	4	120.58	$30 \cdot 14$	$\frac{30 \cdot 14}{1 \cdot 60}=18.84^{* *}$
Between operator (O)	1	1.81	1.81	$\frac{1 \cdot 81}{1 \cdot 60}=1.13$
Interaction $(M \times O)$	4	6.42	1.60	$1 \cdot 60$
Error	40	$18 \cdot 70$	0.47	0.47
Total	49	147.51		

**Highly significant.
*Significant.
When the interaction is tested against the error it is found to be highly significant thereby indicating the presence of interaction. It may hence be interpreted that different water meters behave differently with the change of operator. In view of this finding, there is an urgent need for the procedure for testing of the water meters to be standardized. Since the interaction is significant, under the random effects model chosen for the experiment, meters and operators are to be tested against the interaction. This testing reveals that between operators variation is not significant whereas between
meters variation is highly significant. The latter finding is perhaps to be expected, since the meters had originated from different manufacturers.

5.4 Two-Way Classification with Sub-grouping (Nesting and Replication)

5.4.1 Sub-grouping or nesting of data within a main classification can occur with data that are collected under two main classifications. For example, if several factories are producing the same product on a batch basis and each makes several batches at two or more conditions then a situation illustrated by nesting is obtained.
5.4.2 The batches from each factory are not related to batches from other factories and for the purpose of analysis of variance they are simply subgroups of the factory classification. Any variation between factories would include the variation between batches within factories. The condition factor is an independent classification and its effect on the variation of results is reflected in the difference between factories, that is to say, only in so far as there is interaction between the conditions and factory factors or the condition and batch factors.
5.4.3 Sub-grouping can exist under either factor or both the factors in the same sct of data. Sccondary sub-grouping can cxist within the first sub-groups. In fact, there can be any hierarchy of sub-groupings under both main classes of factors. An illustrative example is given wherein subgrouping occurs under both the factors.
5.4.4 Example 6-For studying the effect of storage time and packing on the moisture content of corn flakes, two types of packings namely, polythene bags and polythene bags in cartons were chosen and the periods selected were 2,4 and 6 months. Six different samples of corn flakes belonging to the same batch of manufacture were analysed in duplicate after storing them for 2,4 and 6 months in the two types of packings. The resultant data is given below:

Storage Period	Packing Type 1			Packing Type 2		
2 months	$\begin{gathered} \text { Sample } 1 \\ 6.17 \\ 6.11 \end{gathered}$	$\begin{gathered} \text { Sample } 2 \\ 4.40 \\ 4.72 \end{gathered}$	$\begin{gathered} \text { Sample } 3 \\ 4 \cdot 22 \\ 3.80 \end{gathered}$	$\begin{gathered} \text { Sample } 1 \\ 4.66 \\ 5: 00 \end{gathered}$	$\begin{gathered} \text { Sample } 2 \\ 3.98 \\ 4.00 \end{gathered}$	Sample 3 6.22 $5 \cdot 40$
Cell Total	$12 \cdot 28$	$9 \cdot 12$	$8 \cdot 02$	9.66	7.98	$11 \cdot 62$
4 months	$\begin{aligned} & 5 \cdot 50 \\ & 5 \cdot 48 \end{aligned}$	4.46 4.85	4.61 4.25	4.52 4.43	$4 \cdot 56$ $3 \cdot 17$	$\begin{aligned} & 5.88 \\ & 4.83 \end{aligned}$
Cell Total	10.98	9.31	8.86	8.95	7.73	10.71
6 months	$\begin{aligned} & 6 \cdot 10 \\ & 6 \cdot 13 \end{aligned}$	$\begin{aligned} & 5 \cdot 80 \\ & 5 \cdot 73 \end{aligned}$	$\begin{aligned} & 6.79 \\ & 7.73 \end{aligned}$	$\begin{aligned} & 6.89 \\ & 6.74 \end{aligned}$	$7 \cdot 12$ $7 \cdot 06$	$\begin{aligned} & 6 \cdot 55 \\ & 6 \cdot 65 \end{aligned}$
Cell Total	$12 \cdot 23$	11.53	14.52	13.63	14-18	$13 \cdot 20$

From the above data a sub-table of the following type is formed to assist in the computations.

Sub-table

Storage Period	Packing		Total
	$\overbrace{\text { Type 1 }}$	Type 2	
2 months	29.42	29.26	58.68
4 months	29.15	27.39	56.54
6 months	38.28	41.01	79.29
Total	96.85	97.66	194.51

The various sum of squares are then obtained as follows:
a) Uncorrected total sum of squares $=(6 \cdot 17)^{2}+\ldots(6 \cdot 65)^{2}=1095 \cdot 1819$

Correction factor $(\mathrm{CF})=\frac{(194.51)^{2}}{36}=1050.9483$
Corrected total sum of squares $=1095 \cdot 1819-1050 \cdot 9483=44 \cdot 2336$
b) Between packing sum of squares $=\frac{(96 \cdot 85)^{2}}{18}+\frac{(97 \cdot 66)^{2}}{18}-\mathrm{CF}$

$$
=1050.9666-1050.9483=0.0183
$$

c) Between periods sum of squares $=\frac{(58 \cdot 68)^{2}}{12}+\frac{(56 \cdot 54)^{2}}{12}+\frac{(79 \cdot 29)^{2}}{12}-\mathrm{CF}$

$$
=1077 \cdot 2515-1050 \cdot 9483=26 \cdot 3032
$$

d) Interaction (packing \times period) sum of squares
$=\frac{(29 \cdot 42)^{2}}{6}+\ldots \frac{(41 \cdot 01)^{2}}{6}-\mathrm{CF}-$ between packing sum of squares
-between period sum of squares
$=1078 \cdot 1328-1050.9483-0.0183-26.3032$
$=0.8630$
e) Between samples (within packing and period) sum of squares

$$
\begin{aligned}
& =\left[\frac{(12 \cdot 28)^{2}}{2}+\ldots \frac{(13 \cdot 20)^{2}}{2}\right]-\left[\frac{(29 \cdot 42)^{2}}{6}+\ldots\left(\frac{(41 \cdot 01)^{2}}{6}\right]\right. \\
& =1092 \cdot 5214-1078 \cdot 1328=14 \cdot 3886
\end{aligned}
$$

The analysis of variance table is then formed as follows :
From the analysis of variance table, between sample sum of squares (within packing and period) is tested against error and the F ratio so obtained is highly significant. Because of this fact both the main effects due to packing and period as also the interaction are tested against between sample (within packing and period). The testing reveals that the mean value of moisture content for between periods is highly significant, corroborating the general presumption that corn flakes gather moisture depending on the period of storage. The analysis also reveals that there is no significant
difference in the moisture content of corn flakes stored in two different packings.

Source of Variation	Degree of Freedom	Sum of Squares	Mean Square	F Ratio
Between packing	1	0.0183	0.0183	$\frac{0.0183}{1.1990}=0.002$
Between periods	2	$26 \cdot 3032$	13.1516	$\frac{13 \cdot 1576}{1 \cdot 1990}=10.97 * *$
Packing period	2	0.8630	0.4315	$\frac{0.4315}{1.1990}=0.36$
Between samples (within packing and period)	12	14.3886	$1 \cdot 1990$	$\frac{1 \cdot 1990}{0 \cdot 1478}=8 \cdot 11^{* *}$
Error	18	$\begin{gathered} 2.6605 \\ \text { (by } \\ \text { subtraction) } \end{gathered}$	0.1478	
Total	35	$44 \cdot 2336$		

**Highly significant.
5.5 Three-Way Classification - If there are three different sources of variation (factors of classification) which are likely to act independently of one another and contribute to the total variability of the data, then the total sum of squares has to be split up into three components due to these sources. The analysis of variance follows the same formulation as that of a two factor arrangement. When more than two factors are involved, all possible combinations of interactions may exist and a complete analysis of variance provides mean squares attributable to all the main factors and all individual interactions.
5.6 Factorial Experiments - When the effect of several variables on a product or process is of interest, it is possible to devise experiments where all of them may be studied simultancously. For each variable, a number of categories or levels may be chosen for study. If an equal number of observations is made for all possible combinations of levels (one level from each variable), the experiment is called factorial. In a completely balanced experiment, each level of each factor is tested at all the levels of all the other factors so that the total number of observations required is the product of all the levels and all the factors. Thus in a factorial experiment to study the wear resistance of vulcanized rubber wherein five qualities of filler (factor A), three methods of pretreatment of the rubber (factor B) and four qualities of raw rubber (factor C) are involved, the total number of observations for a complete experiment turns out to be $5 \times 3 \times 4=60$. When more than two factors are involved, all the possible combinations of interactions may exist and a complete analysis of variance provides mean squares attributable to all individual interactions.

6. CLASSIFICATION OF HIGHER ORDER

6.1 There is no limit to the number of main factors like different treatments, materials, laboratories, temperatures, pressures, catalysts or concentrations, that may be examined in the same experiment. A suitable design of experiment is a pre-requisite in such studies.

APPENDIX A

(Clause 3.1)

FIXED, RANDOM AND MIXED MODELS

If $x_{\mathrm{I}_{\mathrm{k}}}$ is the dimension of k th component produced on the i th machine on j th day in a plant, then it may be written that

$$
x_{i j \mathrm{k}}=\mu+a_{\mathrm{i}}+b_{\mathrm{j}}+c_{1 \mathrm{j}}+e_{\mathrm{ijk}}
$$

where
$\mu=$ overall mean dimension,
$a_{1}=$ effect due to i th machine,
$b_{j}=$ effect due to j th day,
$c_{i j}=$ effect due to interaction of i th machine and j th day, and
$e_{i j k}=$ random effects which are independently normally distributed with mean 0 and variance $\sigma_{\mathrm{e}}{ }^{2}$.
In the random effect model where the machines under study are considered as a random sample from a large number of machine as also the days are the randomly chosen ones, a_{i}, b_{i}, and $c_{i j}$ are all assumed to be independently normally distributed with 0 means and respective variances $\sigma_{\mathrm{A}}{ }^{2}$, $\sigma_{\mathrm{B}}{ }^{2}$ and $\sigma_{\mathrm{AB}}{ }^{2}$.

In the fixed effects model where the conclusions are to be drawn only on the few machines that are under study and on the specific days chosen in the experiment, it is assumed that

$$
\sum_{i} a_{1}=\sum_{i} b_{j}=\sum_{i} c_{1 \mathrm{j}}=\sum_{\mathrm{j}} c_{1 \mathrm{j}}=0
$$

In a mixed effect model where the machines are considered as a random sample from a large number of machines, but the days are those specifically chosen, a_{1} and $c_{1 j}$ are assumed to be independently normally distributed with 0 mean and variances σ_{A}^{2} and $\sigma_{A B^{2}}$ and $\sum_{\mathrm{j}} b_{\mathrm{j}}=\sum_{\mathrm{j}} c_{1 \mathrm{j}}=0$.

BUREAUOFINDIANSTANDARDS

Headquarters :
Manak Bhavan, 9 Bahadur Shah Zafar Marg. NEW DELHI 110002
Telephones: 3310131
3311375
Regional Offices:
Telegrams: Manaksansths
(Common to all Offices)
Central : Manak Bhavan, 9, Bahadur Shah Zafar Marg. NEW DELHI 110002 $\left\{\begin{array}{l}331-0131 \\ 3311375\end{array}\right.$
: 1/14 C.I.T. Scheme VII M, 378662
V.I.P. Road, Maniktola, CALCUTTA 700054
Northern : SCO 445-446, Sector 35-C, CHANDIGARH 160036 21843
Southern : C.I.T. Campus, IV Cross Road, MADRAS 600113 412916
\dagger Western : Manakalaya, E9 MIDC. Marol, Andheri (East), BOMBAY 400093
Telephone
Branch Offices :
'Pushpak', Nurmohamed Shaikh Marg, Khanpur, AHMADABAD 380001 26348
\ddagger Peenya Industrial Area, 1 st-Stage, Bangalore-Tumkur Road, 394955
BANGALORE 560058
Gangotri Complex, 5th Floor, Bhadbhada Road, T.T. Nagar, 554021
BHOPAL 462003
Plot No. 82/83, Lewis Road, BHUBANESHWAR 751002 53627
Kalai Kathir Building, 6/48-A Avanasi Road, COIMBATORE 641037 26705Quality Marking Centre, N.H. IV, N.I.T., FARIDABAD 121001
Savitri Comptex 116 G. T. Road, GHAZIABAD 201001 8-71 1996
53/5 Ward No. 29, R.G. Barua Road, 5th By-lane. 33177
GUWAHATI 781003
5-8-56C L. N. Gupta Marg, (Nampally Station Road) 231083
HYDERABAD 500001
R14 Yudhister Marg, C Scheme, JAIPUR 302005^{*} 63471
117/418 B Sarvodaya Nagar, KANPUR 208005 216876
Plot No. A-9. House No. 561/63. Sindhu Nagar, Kanpur Roaa, 55507 LUCKNOW 226005
Patliputra Industrial Estate, PATNA 800013 62305
District Industries Centre Complex, Bagh-e-Ali Maidan. SRINAGAR 190011
T. C. No. 14/1421, University P. O.: Palayam. 62104
THIRUVANANTHAPURAM 695034
Inspection Offices (With Sale Point) :
Pushpanjali. First Floor, 205-A West High Court Road. 525171
Shankar Nagar Square, NAGPUR 440010
Institution of Engineers (India) Building, 1332 Shivaji Nagar. 52435 PUNE 411005
*Sales Office Calcutta is at 5 Chowringhee Approach. 276800
P. O. Princep Street, CALCUTTA
t Sales Office is. at Novelty Chambers, Grant Road, BOMBAY 896528
\ddagger Sales Office is at Unity Building, Narasimharaja Square, 223971 BANGALORE

[^0]: *Rules for rounding off numerical values (revised).

[^1]: *Specification for Indian hessian: Part II 305 and $229 \mathrm{~g} / \mathrm{m}^{2}$ at 16 percent contract regain (first revision).

